Hi David,
I would send me a PM with your email so I can help you in more detail. You cannot connect the VFD directly to the input power of your machine, the output of the VFDs must remain connected directly to the motor and should not have contactors between the motor and the VFD, nor any other control systems. Also the transformer would not operate correctly along with a number of other controls. There is a previous post on VFD enclosures and recommended setup in the Precision-Matthews machine forum.
The control box and HV wiring is different in your machine then what I have previously seen, as the 1340GT models I have seen do not have fusing nor a power disconnect switch. So I am not sure if yours is a regional requirement and the 1340GT is a special order, or this is a new machine build configuration. Up front to get things rolling I suggest you do a basic VFD install on the 1340GT and use the contactors to switch VFD inputs for F/R, then delve into a complete control system replacement. When you get ready to do a full build, I would retain the stock control board, stock power disconnect and the fuse holder. Power would come to the disconnect switch on the machine and then too you VFD enclosure. On the control board you would remove the stock transformer, contactors and relay and add a DIN rail. If you retain the stock fuse holder then the 24VDC power supply would nee to be moved to the VFD enclosure or visa versa. You will need a total of 3 two pole relays for the 4 relay control system design, see attached file. A proximity sensor can be added at a later date, the coolant relay can either be wired for 24VDC for a air solenoid or 240VAC for single phase coolant pump. On the mill I have been recommending a 3 wire VFD control which is very easy to implement.
Mark