T
Tom Griffin
Forum Guest
Register Today
RE: Building The Steven's Favorite Tonight's task was the one thing I dreaded about making the lever. On the lever of the original Steven's, there was an internal pocket centered on the pivot to clear the end of the extractor which shared the same pivot point as the lever. It was a simple feature to include because the lever was cast and the pocket was just another part of the pattern. Since I am machining this lever, I had to either engineer the pocket out, which I couldn't figure a way to do, or machine it, which would be tough since it would be a blind cut inside the lever and the only access would be through a 9/32" pivot hole. The technique I decided to use was to make a single tooth cutter that I could insert through the 9/32" hole and use it as an end mill by rotating the lever on the rotary table. The catch was that since the shank diameter of the cutter would be 1/8" and the diameter of the pivot hole 7/32", I would only be able to move the cutter over about .04", not enough to machine the full diameter of the pocket in one setup. In other words it was going to take three different sized cutters to machine the pocket. The dastardly pocket can be seen in the section view of the drawing shown in the photo above.
The cutters were made of O1. I turned the 1/8" shank on the lathe, ground the form on the belt sander and grinder, hardened and then sharpened it. I almost completed the first cut, but the cutter shank broke at a stress point. I made another with larger radii and tempered the shank, leaving the cutting edge nearly full hard and the shank a bit springy. This one worked much better and I was able to finish what was left from the first pass plus a bit more. One more cutter will take the pocket to the full .406" diameter.
These simple paddle cutters are easy to make and should be considered when making a project. You can make them exactly the size needed and not have to settle for something close or spend a lot of cash to buy one. This one would work just as well as a boring bar instead of an end mill with some slightly different angles,. The cost was a 3" long piece of 3/8" drill rod and about 10 minutes worth of time.
The first cutter. This one was small enough that it fit straight through the 9/32" hole.
The second cutter, slightly larger diameter with the shank tempered blue for flexibility. This one had to be rocked through the hole which was a pain to set up, but it worked great.
The cutter in place, with the lever mounted on the rotary table, after taking three passes to cut the internal pocket.
Now that it is all finished I've found there is a better way to do the counter-bore. Jim Wisner pointed out that on the samples he uses to make reproduction parts, the counter-bore is cut through one side of the lever and then the outside part of the counter-bore filled with a bushing. Sounds like a good addition to REV B.
The next task will be to make the link and pins that connect the lever to the breech block. Then operating the lever will actually open and close the breech block.
The lever is finished, save some contour filing and polishing. I went ahead and made the link and the pins to attach it to the breech block and put it all together. Unfortunately I got ahead of myself and didn't take any pics. It's pretty encouraging to see everything operate as it's supposed to when the lever is cocked.
"Aviation is going to make such progress as cannot be imagined."
The cutters were made of O1. I turned the 1/8" shank on the lathe, ground the form on the belt sander and grinder, hardened and then sharpened it. I almost completed the first cut, but the cutter shank broke at a stress point. I made another with larger radii and tempered the shank, leaving the cutting edge nearly full hard and the shank a bit springy. This one worked much better and I was able to finish what was left from the first pass plus a bit more. One more cutter will take the pocket to the full .406" diameter.
These simple paddle cutters are easy to make and should be considered when making a project. You can make them exactly the size needed and not have to settle for something close or spend a lot of cash to buy one. This one would work just as well as a boring bar instead of an end mill with some slightly different angles,. The cost was a 3" long piece of 3/8" drill rod and about 10 minutes worth of time.
The first cutter. This one was small enough that it fit straight through the 9/32" hole.
The second cutter, slightly larger diameter with the shank tempered blue for flexibility. This one had to be rocked through the hole which was a pain to set up, but it worked great.
The cutter in place, with the lever mounted on the rotary table, after taking three passes to cut the internal pocket.
Now that it is all finished I've found there is a better way to do the counter-bore. Jim Wisner pointed out that on the samples he uses to make reproduction parts, the counter-bore is cut through one side of the lever and then the outside part of the counter-bore filled with a bushing. Sounds like a good addition to REV B.
The next task will be to make the link and pins that connect the lever to the breech block. Then operating the lever will actually open and close the breech block.
The lever is finished, save some contour filing and polishing. I went ahead and made the link and the pins to attach it to the breech block and put it all together. Unfortunately I got ahead of myself and didn't take any pics. It's pretty encouraging to see everything operate as it's supposed to when the lever is cocked.
"Aviation is going to make such progress as cannot be imagined."