I'll try a little on linear slides, ballscrews and acme screws
To be honest I didnt do much reading on items I can't afford except to note the differences.
Most people think the main reason for a ballscrew is backlash, while this is a reason to use ball screws it is not a feature of a ball screw that most hobby machinists can afford. So lets talk about friction first. The motors used for cnc are small and required to move very heavy loads in exact amounts. Friction is the biggest enemy. If you have ever tried to turn the handle of a machine that has set for a while you will feel a snap before the axis begines to move. The torque has to overcome the friction or adhesion that is between the surfaces before moving. This is everywhere in most manual machines. The thread mating in the nuts the dovetails mating to each other and the slides. Once this adhesion is overcome the motion becomes easier. Its the theory of motion things that are still want to stay still, things that are in motion want to continue moving. This plays hell on accuracy and the size of motor to overcome the initial friction/adhesion and a change in direction multiplies this as the mass has to be stopped then started to change direction (this happens fast but at one point it does stop ).
We overcome this with ball bearings. Bushings are mated surfaces rubbing against each other and the lube holds them apart so they slide on the thin film of lube instead of each other. These bearing surfaces are everywhere in a mill or lathe the dovetails are bearing surfaces and require lube to keep the two surfaces from dragging on each other. Ball bearings work different they do not rub the other part they roll against it always in contact at two points. If i put a ball on a table and put a book on top and move the book the ball will roll as i move the book not slide. There is far less surface area touching each other so there is less friction. Now if all the balls are in a straight line and "exactly" the same size they will all roll together and not against each other. Here is where precision bearings come into this, if one ball is the smallest amount larger than the rest of the balls it will catch up with the others and eventually end up pushing the entire line of balls along. This has the balls now touching in 4 locations top bottom front and back. The front and back of each ball is turning the opposite direction of the ball it is mated against so the friction and heat doubles. So ball size is very important
The surfaces the balls roll on have to be perfect also, a high spot on the table and a book that cannot be moved up leaves a tight spot in the bearing surfaces. So the balls have to be no bigger than this point in their path. Everywhere else they will be a loose fit. This is the reason for precision grinding a ball screw and it's nuts internal route for the balls to roll in.
To make the ballscrew antibacklash all the parts must be in contact at all times. but not ball against ball and they continue to roll along the thread including a passage to return them back to where they started from in the thread.
Ball slides work exactly the same way and the balls roll along the two mated surfaces and are returned through a passage to start over.
The cost of real precision ballscrews and ball slides are to high for most hobby machinist but anything that reduces friction is an advantage for our machines so even less precision ballscrews are a big improvement leaving us to just deal with the friction of our slides. this requires constant lube.
I know there is a lot to add to this and probably corrections needed
Steve