You must install BOTH the Then ProDriveNext (2.1.1) AND the USB driver software. The USB driver must be installed before connecting a computer to the VFD. With the WJ200 turned on and the USB cable connected to your computer, check in Windows under "Devices and Printers" the your Hitachi shows up in the pop up window. Then run the ProDriveNext software program.

1. The software in NOT intuitive until you have used it for awhile. When you load the software, click on the "File" tap at the top menu, then select "New Solution" each time when connecting to the VFD. Otherwise it tries to load old saved VFD files that are saved on your computer. There may be a way to edit them and download back to the VFD, but haven't been able to do this.
2. In the window tab "Add device" check the lower two check boxes, "Read Items:....", then click the "Online\&Read" button below. A pop-up screen should indicate that the VFD is on-line and connected, hit the OK button, and this will start the download of the VFD programmed parameters to the computer program
3. In the left Toolbox pane you will see the VFD is connected. Click on the Parameter Data, a series of tabs and screen should come up in the right viewing pane. Note the series if Taps for each Parameter Group (F, A B, C, H and P). Each Group Tab is a separate list of programmable functions, so you need to click on that tab to see the paramete group.
4. On any one Group Page, you can modify each parameter by clicking on the "Set Value" cell and entering the new numerical value. The parameter line will be highlighted with any changes you make, you can do one or many changes on multiple lines. Note: the value is not changed in the VFD memory until you either hit the "Program" tab at the top and select "Download (PC->Device), or you can place your cursor over the changed parameter, hit the "right " mouse key, and a pop-up menu will give you the same options. I recommend changing a few parameters, downloading them to the VFD and checking that everything is working. Then doing a few more within a group. Also for tweaking values once you get familiar with the effects.
5. There is a software Auto-tune motor function, used to determine your motor's parameters H031-H034 and then enter in the fields H031-H034. When you run it to optimiz your motor parameters, write down the values and then enter your motor values in H031-H034. If control block terminals stop to function after autotune, check A001 and A002 are set to " 01 ". They sometimes change when you run the VFD from the "Device Status" tab functions. like the "Basic inverter operation / IO status monitor" menu button.
6. The WJ200 may need to be programmed before it will work using the terminal commands and external speed control. Some of the software operated motor controls may change some of the VFD programming and it may stop responding to command (they change A001 and A002, so recheck these if the terminal block commands and external pot speed control stop working). Keep a hard copy of the program changes so you make. Be sure that the "Logic input" wiring connections match up with their assigned programmed functions "C001-C007"

READ THIS: If you manually program the WJ200 via the keypad you must first:

1. Change $\mathbf{B 0 3 7}$ to " $\mathbf{0 0}$ " for full display of all functions. You must press both the up and down arrows to access single-digit edit mode since this feature is not accessible in the default basic display. You must change B037 before you can change B031.

AND THEN

2. Change B031 to "10". This unlocks all the high level program functions for editing. Then make the following program changes that are highlighted.

F Group						Set by VFD Comments
Data ID	Data Name	Set value	Unit	Default value	Range	
FOO1	Output frequency setting	0	Hz	0	0.00, $0.50 \ldots 80.00$	
F002	Acceleration time (1)	5	s	10	$0.01 \ldots 3600.00$	Acceleration time of 5 seconds with an S accelartion curves works well
F202	Acceleration time (1),2nd motor	10		10	0.01 ... 3600.00	
F003	Deceleration time (1)	1	s	10	0.01 ... 3600.00	Requires external 50 ohm 500 W brake resistor for $0.5-2$ second stop times
F203	Deceleration time (1),2nd motor	10		10	$0.01 \ldots 3600.00$	
FOO4	Keypad RUN key routing	00:(Forward)		00:(Forward)		
A Group						
Data ID	Data Name	Set value	Unit	Default value	Range	
A001	Frequency source	01:(Control terminal)		$\begin{array}{\|l\|} \hline \begin{array}{l} \text { 02:(Function F001 } \\ \text { setting) } \end{array} \\ \hline \end{array}$		this must be set to "01" IF You use an external pot connected to TERMINALS "H, O \& L" TO SET YOUR RPM SPEED CONTROL.
A201	Frequency souree, 2nd motor	O2: (Funetion F001 setting)		$\begin{aligned} & \hline \begin{array}{l} \text { O2:(Function F001 } \\ \text { setting) } \end{array} \\ & \hline \end{aligned}$		
A002	Run command source	01:(Control terminal)		02:(Run key on keypad, or digital operator)		THIS MUST BE SET TO "01" IF YOU USE COMMANDS SENT TO THE VFD VIA CONTROL BLOCK TERMINAL "1-7", THIS MAY GET RESET TO "02" WHEN YOU DO THE MOTOR AUTOTUNE AND THE VFD WILL NO LONGER RESPONDS TO THE
						TERMINALS, SO MAY NEED TO BE RESET BACK TO "02". WHEN SET TO "01" VFD RUN KEY WILL NOT WORK, ONLY STOP KEY.
A202	Run command source,2nd motor	O2: (Run key on keypad, or digitaloperator)		02:(Runkeyon keypad, or digital operator)		
A003	Base frequency	60	Hz	60	30.0 ... 80.0	SET TO MOTOR BASE FREQUENCY ON NAME PLATE, DEFAULT =60
A203	Base frequency, 2nd motor	60	Hz	60	$30.0 \ldots 60.0$	
A004	Maximum frequency	80	Hz	60	60.0 ... 400.0	Recommend 80 or 90 Hz for motors with a base frequency of 60 Hz
A204	Alaximum frequency, 2 2d motor	60	Hz	60	60.0 ... 400.0	
A005	[AT] selection	00:(Select between [O] and [OI] at [AT] (ON=OI, OFF=O))		00:(Select between [O] and [OI] at [AT] (ON=OI, OFF=O))		
A011	[0] input active range start frequency	0	Hz	0	0.00 ... 400.00	
A012	[0] input active range end frequency	0	Hz	0	$0.00 \ldots 400.00$	
A013	[0] input active range start voltage		\%	0	$0 \ldots 100$	
A014	[0] input active range end voltage	100	\%	100	$0 \ldots 100$	
A015	[O] input start frequency enable	01:(Use OHz)		01:(Use 0Hz)		
A016	Analog input filter	31		8	1... 30, 31	It is strongly recommend this is set to " 31 " if you use an external spped control, such as a wired spped pot. When set to " 31 " the VFD avverages the pot readings and only allows changes above a 0.1 Hz threshold. This reduces noise spikes picked up in the wiring going to the pot which cause RPM fluctuations when the pot is set to a fixed RPM setting.
A017	EzSQ selection	00:(disabling)		00:(disabling)		
A019	Aulti speed operation selection	00:(Binary operation (16 speeds selectable with 4 terminals)		00:(Binary operation (16speeds selectable with 4 terminals)		
A020	Aulti-speed freq. 0		Hz	θ	0.00, 0.50 ...80.00	
A220	Aulti- speed frea.0, 2nd motor		Hz	θ	0.00, 0.50 ...60.00	
A021	Multi-speed freq. 1	θ	Hz	θ	0.00, 0.50 ...80.00	
A022	Multi-speed freq. 2		Hz	θ	0.00, 0.50 ...80.00	
A023	Anulti speed freq. 3		Hz^{2}	θ	0.00, 0.50 ..80.00	
A024	Aulti speed freq. 4		Hz	θ	0.00, 0.50 ...80.00	
4025	Aulti-speed frea. 5		Hz	θ	0.00,0.50 ..80.00	

A026	Anuli speed freeq. 6		\| $\mathrm{Hz}^{\text {z }}$	θ	0.00, 0.50 ...80.00	
${ }_{4027}$	Aulti speed freq. 7		$\mathrm{Hz}^{\text {z }}$	θ	0.00, 0.50 ...80.00	
4028	Atuli speed freq. 8		Hz	θ	0.00, 0.50 ...80.00	
4029	Aulti speed freq. 9		$\mathrm{Hz}^{\text {l }}$	θ	$0.00,0.50 \ldots 80.00$	
${ }^{\text {A036 }}$	Aulti speed freq. 10		${ }^{\text {Hz }}$	θ	$0.00,0.50 \ldots 80.00$	
4031	Antil speed free. 11		Hz	θ	$0.00,0.50 \ldots 80.00$	
${ }^{\text {A032 }}$	Multi speed freeq. 12		$\mathrm{Hz}^{\text {l }}$	θ	$0.00,0.50 \ldots . .80 .00$	
${ }^{4033}$	Andicispeed free. 13		Hz	θ	$0.00,0.50 \ldots 80.00$	
4034	Antli speed free. 14		$\mathrm{Hz}^{\text {z }}$	θ	$0.00,0.50 \ldots 80.00$	
${ }^{4035}$	Multi speed free. 15		Hz	θ	$0.00,0.50 \ldots . .80 .00$	
${ }^{4038}$	Jog frequency		$\mathrm{Hz}^{\text {H }}$	${ }^{6}$	$0.50 \ldots 9.99$	
A039	Jog stop mode	04:(Controlled deceleration (valid during run)) run))		04:(Controlled deceleration (valid during run))		
${ }^{1041}$	Torque boost select	01:(Automatic torque boost)		00:(Manual torque boost)		
A241	Forate boost select, 2nd motor	O0:(Mantul torate boest)		00:(Mantrat torque boost)		
4042	Manual torque boost value		\%	1	0.0...20.0	
A242	Manual torque boost value, 2 nd motor		\%	1	0.0...20.0	
A043	Manual torque boost frequency		\%	5	0.0.... 50.0	
A243	Manual torque boost frequency, 2nd motor		\%	5	0.0... 50.0	
${ }^{4044}$	V / f characteristic curve	03:(Sensorless vector (SLV))		$\begin{aligned} & \hline \text { 00:(Constant } \\ & \text { torque) } \end{aligned}$		IMPORTANT TO SET TO "03" Sensorless Vector for best performance
A244	V/f characteristic curve, za d motor	00:(Constant torque)		$\begin{aligned} & \text { OO:(Constant } \\ & \text { torque) } \end{aligned}$		
4045	V/f gain		\%	100	$20 . .100$	
4245	V/f gain, 2 nd motor	100%		100	20...100	
${ }^{4046}$	Voltage compensation gain for automatic torque boost	100		100	$0 . .255$	
A246	Voltage compensation gain for automatic torque boost, 2nd motor	100		100	$0 \ldots 255$	
4047	Slip compensation gain for automatic torque boost	100		100	$0 . . .255$	
A247	Stip compensation gain for autematic torque boost, 2nd motor	100		100	0...255	
4051	DC braking enable	00:(Disable)		00:(Disable)		DO NOT CHANGE THII, IT APPLIES TO A ELECTRO-MECHANICAL BRAKE
${ }^{4052}$	DC braking frequency		Hz	0.5	0.00 ... 60.00	
${ }^{4053}$	DC braking wait time	0 s	s	0	0.0 $0 . . .5 .0$	
${ }^{4054}$	DC braking force for deceleration		\%	50	$0 . . .100$	If set too high will get overvoltage error due to braking regeneration
${ }^{4055}$	DC braking time for deceleration	0 s	s	0.5	0.0... 60.0	
${ }^{4056}$	DC braking / edge or level detection for [DB] input	01:(Level detection)		$\begin{aligned} & \text { 01:(Level } \\ & \text { detection) } \end{aligned}$		
4057	DC braking force at start		\%	0	$0 . . .100$	
4058	DC braking time at start	0 s	s	0	0.0....60.0	
${ }^{4} 059$	Carrier frequency during DC braking		kHz	5	2.0... 15.0	
${ }^{1061}$	Frequency upper limit		Hz	0	0.00 ... 80.00	Upper limit range is = A004, Maximum Frequency, use either 80 or 90 Hz
4261	Frequeney upper limiti,2nd motor		Hz	θ	$0.00 \ldots 60.00$	
${ }^{4062}$	Frequency lower limit		Hz		0.00, 0.50 ... 80.00	
4262	Frequeney lower timit, 2nd motor		Hz	θ	$0.00,0.50 \ldots 60.00$	
$\stackrel{4063}{ }$	Jump freq. (center) 1		Hz	0	0.00 ... 400.00	
${ }^{4064}$	Jump freq. width (hysteresis) 1		Hz	0.5	0.00 ... 10.00	
4065	Jump freq. (center) 2		Hz	5	0.00 ...400.00	
4066	Jump freq. width (hysteresis) 2		Hz	0.5	0.00 ... 10.00	
${ }^{4067}$	Jump freq. (center) 3		Hz		0.00 ...400.00	
4068	Jump freq. width (hysteresis) 3		Hz	0.5	$0.00 \ldots 10.00$	
4069	Acceleration hold frequency		Hz	0	0.00 ...400.00	
${ }^{4070}$	Acceleration hold time		s		0.0... 60.0	
4071	PID enable	00:(PID Disable)		00:(PID Disable)		
${ }^{\text {A072 }}$	PID proportional gain	,		1	$0.00 \ldots 25.00$	
${ }^{1073}$	PID integral time constant		s		0.0 ... 3600.0	
4074	PID derivative time constant	0 s	s	0	$0.00 \ldots 100.00$	
${ }^{4075}$	PV scale conversion	1			0.01 ... 99.99	
${ }^{4076}$	PV source	01:[(0] terminal (voltage in))		$\begin{array}{\|l} \hline \begin{array}{l} \text { 00:([OI] terminal } \\ \text { (current in)) } \end{array} \\ \hline \end{array}$		This is the source of your Hz (rpm) adjustment, i.e. external speed pot
4077	Reverse PID action	OO:(PID input = SP-PV)		$\begin{aligned} & \text { 00:(PID input = SP- } \\ & \text { PV) } \end{aligned}$		
4078	PID output limit		\%		0.0 ...100.0	
4079	PID feed forward selection	00:(Disabled)		00:(Disabled)		
${ }^{4081}$	AVR function select	02:(AVR enabled except during deceleration)		$\begin{aligned} & \text { 02:(AVR enabled } \\ & \text { except during } \\ & \text { deceleration) } \end{aligned}$		
A281	AVR function select,2nd motor	02:(AVR enabled except during deceleration)		02:(AVR enabled except during deceleration)		
${ }^{2082}$	AVR voltage select	02:(220) V	v	00:(200)		SET TO YOUR MOTOR NAMEPLATE VOLTAGE, 220, 230, 240V. PM1340GT stock 3 phase motor is 220 V
4282	AVR voltage select, 2nd motor	00:200)	*	00:1200)		
${ }^{4083}$	AVR filter time constant		s	0.3	$0.000 \ldots 10.000$	Longer voltage sampling time decreases overvoltage fault error
${ }^{4084}$	AVR deceleration gain	100%		100	50 ... 200	
4085	Energy-saving operation mode	00:(Normal operation)		00:(Normal operation)		Normal operation No Energy Saving Needed
A086	Energy-saving mode tuning		\%	50	0.0 ...100.0	
${ }^{1092}$	Acceleration time (2)	5 s	5	10	$0.01 \ldots 3600.00$	When 2 stage acceleration used, adjust as needed
A292	Aceeleration time (2),2nd motor	10 5		10	$0.01 \ldots 3600.00$	
${ }^{\text {A093 }}$	Deceleration time (2)	1 s	s	10	$0.01 \ldots 3600.00$	When 2 stage braking used, adjust as needed, suggest $1-3$ seconds.
4293	Deeceleration time (2), 2nd motor	10 /		10	0.01 ... 3600.00	
4094	Select method to switch to Acc2/Dec2 profile	00:(2CH input from terminal)		00:(2CH input from terminal)		
A294	Select methed to swith to Aeez/Deez profile, 2nd motor	00: 2 (2CH innut friom terminal)		oo:(2CH input from terminal)		
A095	Acc1 to Acc2 frequency transition point		Hz	0	0.00 ...400.00	
4295	Acel to Aece frequeney transition point, 2nd motor		Hz		.00...400.00	
4096	Dec1 to Dec2 frequency transition point		Hz	0	0.00 ... 400.00	
${ }^{2396}$	Dec1 to Dee2 freequeney transition point, 2 nd motor		Hz		.00...400.00	
${ }^{4097}$	Acceleration curve selection	01:(s-curve)		01:(s-curve)		Acceleration is default S curve, seems to work well
${ }^{4098}$	Deceleration curve selection	00:(linear)		01:(s-curve)		Deceleration is linear. S curve may be more likely to trip the overvoltage error.
${ }^{\text {A101 }}$	[01$]$ input active range start frequency		Hz	0	0.00 ...400.00	
A102	[01] input active range end frequency		Hz	,	0.00 ... 400.00	
A103	[01] input active range start current	20\%	\%	20	$0 . . .100$	
A104	[OI] input active range end current	100\%		100	$20 . .100$	
A105	[01] input start frequency select	00:(Use offset (A101 value))		$\begin{array}{\|l\|} \hline 00:(\text { Use offset } \\ \text { (A101 value)) } \end{array}$		
A131	Acceleration curve constant	2		2	1... 10	
${ }^{\text {A132 }}$	Deceleration curve constant				$1 . . .10$	
${ }^{\text {A141 }}$	A input select for calculate function	02:(Terminal [0] input)		$\begin{aligned} & \text { 02:(Terminal [0] } \\ & \text { input) } \end{aligned}$		
A142	B input select for calculate function	02:(Terminal [0] input)		$\begin{aligned} & \text { 03:(Terminal [OI] } \\ & \text { input) } \\ & \hline \end{aligned}$		Set to "02" which is speed adjust base on voltage, "03, Terminal O1" is current

0015	Input [5] active state	00:normally open [NO O	00:normally open [NO]	
c016	Input [6] active state	00:mormally open [NO]	00:normally open [NO]	
C017	Input [7] active state	00:mormally open [NO]	00:normally open [NO]	
C021	Output [11] function	01:(FA1:Frequency Arrival Type 1-Constant Speed)	01:(FA1:Frequenc y Arrival Type 1Constant Speed)	
C022	Output [12] function	00:(RUN:Run Signal)	00:(RUN:Run Signal)	
co26	Alarm relay function	05:(AL:Alarm Signal)	05:(AL:Alarm Signal)	
0027	[EO] terminal selection(Pulse/PWM output)	07:(LAD frequency (PWM))	07:(LAD frequency (PWM))	
C028	[AM] terminal selection(Analog voltage output 0...10V)	07:(LAD frequency)	07:(LAD frequency)	
c030	Digital current monitor reference value	100\%	\% 100	20.0 ... 200.0
0031	Output [11] active state	00:mormally open [NO]	00:normally open [NO]	
c032	Output [12] active state	00:normally open [NO]	00:normally open [NO]	
co36	Alarm relay active state	01:normally closed [NC]	01:normally closed [NC]	
c038	Output mode of low current detection	01:(During constant speed only)	01:(During constant speed only)	
c039	Low current detection level	100\%	\% 100	0.0 ... 200.0
c040	Output mode of overload warning	01:(During constant speed only)	01:(During constant speed only)	
C041	Overload warning level	115\%	\%	0.0 ... 200.0
C241	Overload warning level, 2 nd motor	115\%	\% 115	0.0 ...200.0
C042	Frequency arrival setting for acceleration	0 Hz	Hz	0.00 ... 400.00
0043	Frequency arrival setting for deceleration	0 Hz	Hz	0.00 ... 400.00
C044	PID deviation level	3\%	\%	$0.0 \ldots 100.0$
C045	Frequency arrival setting 2 for acceleration	0 Hz	Hz	0.00 ... 400.00
C 046	Frequency arrival setting 2 for deceleration	0 Hz	Hz	0.00 ...400.00
$\mathrm{CO47}$	Pulse train input/output scale conversion	1	$\square 1$	0.01 ...99.99
C052	PID FBV output high limit	100\%	\% 100	0.0 ...100.0
C053	PID FBV output low limit	0\%	\%	0.0 ...100.0
C054	Over-torque/under-torque selection	00:(Over-torque)	00:(Over-toraue)	
C 055	Over/under-torque level(FFrward powering mode)	100\%	\% 100	$0 . . .200$
C 056	Over/under-torque level(Reverse regen. mode)	100\%	\% 100	$0 . .200$
C057	Over/under-torque level(Reverse powering mode)	100\%	\% 100	$0 . . .200$
C058	Over/under-torque level(Forward regen. mode)	100\%	\% 100	$0 . . .200$
c059	Signal output mode of Over/under-torque	01:(During constant speed only)	01:(During constant speed only)	
0061	Electronic thermal warning level	90\%	\%	$0 \ldots 100$
0063	Zero speed detection level	0 Hz	Hz 0	00 ... 100.00
C064	Heat sink overheat warning	100 C	100	$0 . . .110$
c071	Communication speed	05:(9600bps)	05:(9600bps)	
C 072	Modbus address	1	1	$1 \ldots 247$
c074	Communication parity	00:(No parity)	00:(No parity)	
C 075	Communication stop bit	01:(1bit)	01:(1bit)	
C076	Communication error select	02:(Disable)	02:(Disable)	
6077	Communication error time-out	0 s	- 0	0.00 ... 99.99
C 078	Communication wait time	0 m	ms	0...1000
0081	O input span calibration	100\%	\% 100	0.0 ...200.0
C082	Ol input span calibration	100\%	\% 100	0.0 ...200.0
0085	Thermistor input (PTC) span calibration	100\%	\% 100	0.0 ... 200.0
0091	Debug mode enable	00:(Disable)	00:(Disable)	
C 096	Communication selection	00:(Modbus-RTU)	00:(Modbus-RTU)	
C098	EzCOM start adr. of master	$\longrightarrow 1$		1...8
C099	EzCOM end adr. of master	$\underline{1}$		$1 . . .8$
c100	EzCOM starting trigger	00:(Input terminal(485RUN))	00:(Input terminal(485RUN))	
c101	Up/Down memory mode selection	00:(Clear last frequency (return to default frequency FOO1))	00:(Clear last frequency (return to default frequency F001))	
c102	Reset selection	00:(Cancel trip state at input signal ON transition, stops inverter if in Run Mode)	00:(Cancel trip state at input signal ON transition, stops inverter if in Run Mode)	
${ }^{103}$	Restart mode after reset	00:(Start with 0 Hz)	$\begin{aligned} & \hline 00:(\text { Start with } 0 \\ & \mathrm{Hz}) \\ & \hline \end{aligned}$	
${ }^{1} 104$	UP/DWN clear mode	00:(0Hz)	00:(0Hz)	
${ }^{1} 105$	EO gain adjustment	100\%	\% 100	$50 \ldots 200$
C106	AM gain adjustment	100\%	\% 100	50 ... 200
C109	AM bias adjustment	0\%	\% 0	$0 \ldots 100$
C 111	Overload warning level 2	115\%	\% 115	0.0... 200.0
C130	Output [11] on delay	0 s	0	0.0 ... 100.0
${ }^{1} 131$	Output [11] off delay	0 s	0	0.0 ...100.0
${ }^{1} 132$	Output [12] on delay	0 s	- 0	$0.0 \ldots 100.0$
${ }^{1} 133$	Output [12] off delay	0 s	- 0	$0.0 \ldots 100.0$
$\overline{C 140}$	Relay output on delay	0 s	- 0	$0.0 \ldots 100.0$
${ }^{1} 141$	Relay output off delay	0 s	0	0.0 ...100.0
C142	Logic output 1 operand A	00:(RUN:Run Signal)	00:(RUN:Run Signal)	
C143	Logic output 1 operand B	00:(RUN:Run Signal)	00:(RUN:Run Signal)	
C144	Logic output 1 operator	00:([LOG] = A AND B)	$\begin{aligned} & \text { 00:([LOG] = A AND } \\ & \text { B) } \end{aligned}$	
C145	Logic output 2 operand A	00:(RUN:Run Signal)	00:(RUN:Run Signal)	
C146	Logic output 2 operand B	00:(RUN:Run Signal)	00:(RUN:Run Signal)	
C147	Logic output 2 operator	00:([LOG] = A AND B)	$\begin{aligned} & \text { 00:([LOG] = A AND } \\ & \text { B) } \end{aligned}$	
C148	Logic output 3 operand A	00:(RUN:Run Signal)	$\begin{aligned} & \text { 00:(RUN:Run } \\ & \text { Signal) } \end{aligned}$	

C149	Logic output 3 operand B	00:(RUN:Run Signal)		00:(RUN:Run Signal)		
C150	Logic output 3 operator	00:([LOG] = A AND B)		$\begin{aligned} & 00:[[\mathrm{LOG}]=\mathrm{A} \mathrm{AND} \\ & \mathrm{B}) \end{aligned}$		
C160	Input [1] response time	1		1	0 ... 200	
C161	Input [2] response time	1		1	0 ... 200	
C162	Input [3] response time	1		1	0 ... 200	
C163	Input [4] response time	1		1	0 ... 200	
C164	Input [5] response time	1		1	0 ... 200	
C165	Input [6] response time	1		1	$0 . . .200$	
C166	Input [7] response time	1		1	0 ... 200	
C169	Multistage speed/position determination time	0		0	$0 . . .200$	
H Group						
Data ID	Data Name	Set value	Unit	Default value	Range	
H001	Auto-tuning selection	00:(Disabled)		00:(Disabled)		utotune feature to determine your motor's parameters H031-H034 and
H002	Motor constant selection	02:(Auto tuned data)		00:(Hitachi standard motor)		then enter in the fields below. I run the autotune feature through the software. Write down the values and then enter your motor values in H031-H034. If control
H2O2	Motor constant selection, 2nd motor	02:(Auto tuned data)		O0:(Hitachi standard motor)		block terminals stop to function after autotune, check A001 and A002 is set to "01"
H003	Motor capacity	06:(1.5)	kW	06:(1.5)	ASSUMES 2HP	
H203	Anotor capacity, 2nd motor	06:(1.5)	kW	06:(1.5)		
H004	Motor poles setting	01:(4P)		01:(4P)		
H204	Motor poles setting,2nd motor	01:(4P)		01:(4P)		
H005	Motor speed response constant	100	\%	100	1 ... 1000	
H205	Motor speed response constant, 2nd motor	100	\%	100	1... 1000	
H006	Motor stabilization constant	100		100	0... 255	
H206	Motor stabilization constant, 2nd motor	100		100	0... 255	
H020	Motor constant R1 (Hitachi motor)	1.477	Ohm	1.477	0.001 ... 65.535	
H220	Motor constant R1, 2nd motor (Hitachi motor)	1.477	Ohm	1.477	0.001 ...65.535	
H021	Motor constant R2 (Hitachi motor)	0.801	Ohm	0.801	0.001 ... 65.535	
H221	Motor constant R2, 2nd motor (Hilachimotor)	0.801	Ohm	0.801	0.001 ...65.535	
H022	Motor constant L (Hitachi motor)	12.8	mH	12.8	0.01 ... 655.35	
H222	Anotor constant L, 2nd motor (Hitachimotor)	12.8	mH	12.8	0.01...655.35	
H023	Motor constant 10 (Hitachi motor)	4.16	A	4.16	0.01 ... 655.35	
H223	Motor constant 10,2 d motor (Hitachi motor)	4.16	A	4.16	0.01 ...655.35	
H024	Motor constant J (Hitachi motor)	0.017	kgm2	0.017	0.001 ... 9999.000	
H224	Motor constant J, 2nd motor (Hitachi motor)	0.017	kgmz	0.017	$0.001 \ldots . .9999 .000$	
H030	Motor constant R1 (Auto tuned data)	1.477	Ohm	1.477	0.001 ... 65.535	
H230	Motor constant R1, 2nd motor (Auto tuned data)	1.477	Ohm	1.477	0.001 ...65.535	
H031	Motor constant R2 (Auto tuned data)	0.801	Ohm	0.801	0.001 ... 65.535	
H231	A 0 oror constant R2, 2nd motor (Auto tuned data)	0.801	Ohm	0.801	$0.001 \ldots . .65 .535$	
H032	Motor constant L (Auto tuned data)	12.8	mH	12.8	0.01 ... 655.35	
H232	Aotor constant L, 2nd motor (Auto tuned data)	12.8	mH	12.8	0.01...655.35	
H033	Motor constant 10 (Auto tuned data)	4.16	A	4.16	0.01 ... 655.35	
H233	Motor constant 10, 2nd motor (Autotuned data)	4.16	A	4.16	0.01...655.35	
H034	Motor constant J (Auto tuned data)	0.017	kgm2	0.017	0.001 ... 9999.000	
H234	Aotor constant J, 2nd motor (Auto tuned data)	0.017	kgmz	0.017	0.001...9999.000	
H050	Slip compensation P gain for V/f control with FB	0.2	times	0.2	$0.00 \ldots 10.00$	
H051	Slip compensation I gain for V/f control with FB		s	2	0 ... 1000	

Run Hitachi VFD Software program, click on File and choose new project. Click to download Parameter and Program data and then click on Online\&Read.

Click on Parmater as shown to pull up Parameter setting WJ200 window. Click on Group tab you want to edit.

You make changes in the 'Set value" Column, the line(s) will be highlighted to indicate a change(s). The change(s) must then be sent to the VFD.

Program variable changes must be sent from the PC to the VFD, either Left click on the "Program" pull down menu tab, or Right click on the highlighted parameter to pull up the menu.

C Group Tab pulls up the program variables for the Input function

Example of Control Wiring at the Terminal Block. Note all cables have ground shields connected only at the VFD end.
NOTE: L, PLC \&P24 CONNECTIONS VARY BASED ON APPLICATION. Connections for schematic are different than pictured here.

Use Star Grounding, Ground shields only at VFD end of cable.

 Adapted wiring diagram for PM1236 lathe using a single 24VDC 4 pole relay

Note that relay connections in sockets is different then the relay, connect via the labeled numbers on the socket screw terminals. Note proper polarity and orientation of diodes and LEDs, the banded side is the (-) cathode

784-4C-XXX

$>8 \mathrm{~d}-\mathrm{tc}-\mathrm{XXX}$

AUTOMATION DIRECT

E-Stop control panel \#1
GCX1131 Pushbutton, 22 mm metal, latch with twist-to-release, 40 mm mushroom operator, 1 N.C. contact block. $\mathbf{\$ 1 2 . 5 0}$ (add separate NO or NC to control other functions, such as emergency stop or Unattended Start Protection input to VFD)

Jog Button Green with clear guarded shield around the button, with separate green LED light used to indicate power \#1 (Can also use separate LED pilot light, do not use an incandescent bulb due to the high power draw.)
GCX1202-24L Pushbutton, 22 mm metal, momentary, LED illuminated, green, 24 VAC/DC, flush operator with colored plastic ring, 1 N.O. contact block. F/R requires additional NC switch blocks. \$19.50

Speed potentiometer

ECX2300-5K 22 mm potentiometer with 5 Kohm resistance, black handle. Legend plate ECX2640 sold separately $\$ 36.50$.
ECX2640 22mm legend plate for potentiometer with 0\% to 100% marking $\$ \mathbf{3 . 5 0}$
Alternate is 1 K or $2 \mathrm{~K} 2-4 \mathrm{~W}$ good quality potentiometer with knob (eBay, Mouser Electronics, etc.), $\sim \$ 5-10$
Additional Switch blocks if needed.
ECX1040-5 CONTACT BLOCK 22mm 5/PK N.O. GREEN FOR GCX SERIES ONLY \$15
ECX1030-5 CONTACT BLOCK 22mm 5/PK N.C. RED FOR GCX SERIES ONLY \$15

Relays and socket mount \#1:
783-4C-24D Ice cube control relay, 24 VDC coil voltage, 4PDT, 15A contact rating, with LED indicator and push-to-test button. Purchase $783-4 C-S K T$ mounting socket separately. $\mathbf{\$ 8 . 2 5}$ 783-4C-SKT RELAY SOCKET FOR 783 SERIES \$4.50

Diodes: 1N4004 or 1N4007 (1A 400V min) for relay logic (prevents back feed of voltage)
Relay protection diode as shown: AD-ASMD-250 plugs into relay socket (or use 1 N 4004 between A1 and A2 terminal as shown)

Misc: Control cable 18-22 G 8 wire (multi wire flexible, depends on the number of controls; 5-8 or more wires between control box and VFD for commands), 4 wire $18-24 \mathrm{G}$ shielded cable to connect the speed pot (use 3 wires, red high side, white wiper, black low side OV, green not used) to the VFD, and control box and VFD. Motor cable between VFD and motor, 14G 4 conductor (3 wire + ground + shield), preferably shielded, but regular 4 conductor will work. Ground is connected at VFD and motor, shield for all cables only at VFD end. Should be 600V rating. Power cable to VFD: SEOOW or SOOW Flexible portable cord, Type SEOOW, 3 or 4 conductors, 12 AWG (2HP 240 VAC) up to 25 ', 600 V maximum, -50 to 105 degrees C, fully annealed stranded copper conductors, rated for outdoor use, oil-resistant and water-immersible, 20 foot coil $\$ 22.50$
You will need assorted connectors and spades. Additional terminal blocks may be needed

